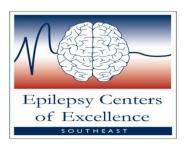
Statistics in Evidence Based Medicine II

Lecture 4: Survival Analysis


Rizwana Rehman, PhD

Regional Statistician Southeast Epilepsy Centers of Excellence Durham VA Medical Center, Durham NC

Rizwana.Rehman@va.gov (919)286-0411 ext: 5024

Audio Information: Dial 1-855-767-1051 Conference ID 61304911

Text Books

■ Main: Statistics at Square One 12th edition (2010)

M J Campbell & T D V Swinscow

http://www.phsource.us/PH/EPI/Biostats/

Secondary: Basic and Clinical Biostatistics (2004)

Beth Dawson, Robert G. Trapp

http://www.accessmedicine.com/resourceTOC.aspx?resourceID=62

 For more information, program materials, and to complete evaluation for CME credit visit

www.epilepsy.va.gov/Statistics

Audio Information: Dial **1-855-767-1051**Conference ID **61304911**

Overview

- Vocabulary
- Kaplan-Meier Curve
- Log Rank Test
- Assumptions
- Reading and Reporting the Results
- Appendix- Survival Analysis with Openstat

What is Survival Analysis

- Survival analysis is a collection of statistical techniques for data analysis where the outcome variable is time until an event occurs.
- Survival data could come from clinical trials, epidemiological observational studies or lab experiments on animals.

Examples

- Time from birth to death
- Time from treatment of lung cancer to death
- The time from treatment until eradication of infection among patients who are treated with an antibiotic
- Disease free cohort/time until heart disease

- Data are subject to censoring when the study ends before the event occurs.
 - A person does not experience the event during study.
 - A person is lost to follow up.
 - A person withdraws from the study.
 - A record is lost after a certain time.

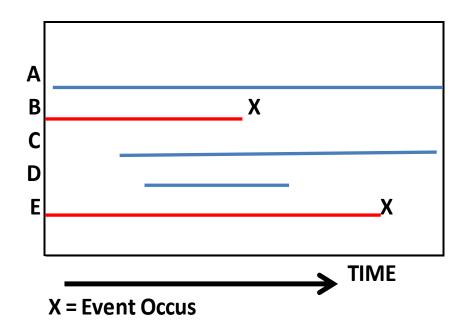
Types of Censored Data

Right Censored

 True survival time is equal to or greater than observed survival time.

Left Censored

 True survival time is less than or equal to the observed survival time.


Interval Censored

True survival time is within a known time interval.

Analysis of Survival Data

Standard techniques are not suitable for survival analysis.

Vocabulary of Survival Analysis

- Survival Time T(T≥0)- time individual has survived over some follow-up period.
 - A specific value of T is denoted by t
- Event
 - Death, disease incidence, relapse from remission, recovery
 - The start and end of event must be clearly identified

- Survival Function S(t)
 - Probability a person has survived at least to time t S(t)=P[T>t]
 - The graph of S(t) against t is called a survival curve.
- \blacksquare Hazard function h(t)
 - Hazard rate is simply the death rate; chance that a person will die today given that person was alive at the beginning of the day

Goals of Survival Analysis

- To estimate and interpret survivor and or hazard functions
- To compare survivor or hazard functions
- To assess the relationship of explanatory variables to survival time

Kaplan-Meier Curve

 Probability of surviving k or more periods (cumulative proportion surviving) entering the study is a product of the k observed survival rates for each period.

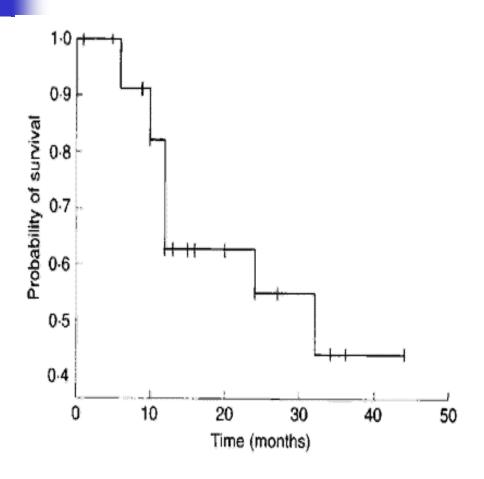
$$S(k) = p_1 \times p_2 \times p_3 \times \cdots \times p_k$$

 The proportion surviving period i having survived up to period i is given by

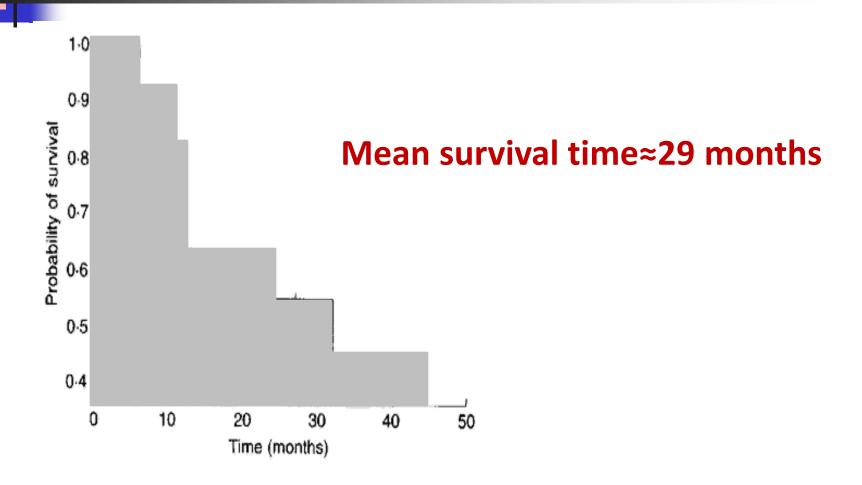
$$p_i = (r_i - d_i)/r_i$$

- The survival times including the censored values should be ordered in increasing duration.
- If a censored time has the same value as an uncensored time, then the uncensored should precede the censored.
- At each event (i) work out the number alive r_i before the event.
- Censoring does not alter the cumulative surviving.

Kaplan-Meier Example

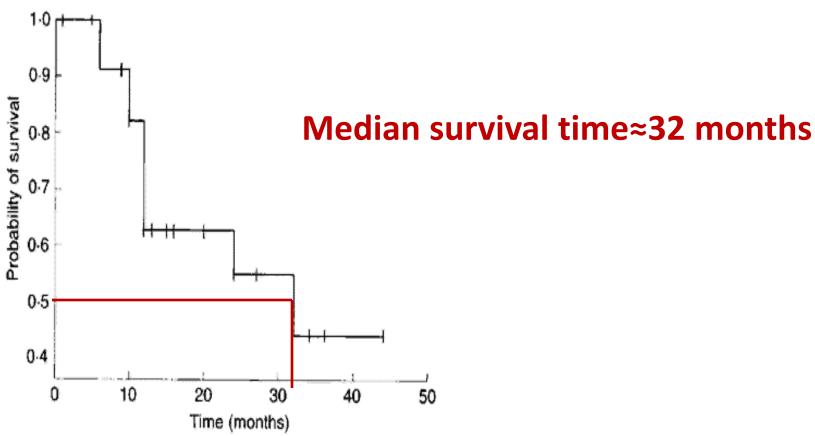

Table 12.1 Survival in 49 patients with Dukes' C colorectal cancer randomly assigned to either y linoleic acid or control treatment

Treatment	Survival time (months)		
y linoleic acid (n=25)	1+, 5+, 6, 6, 9+, 10, 10, 10+, 12, 12, 12, 12, 12+, 13+, 15+, 16+, 20+, 24, 24+, 27+, 32, 34+, 36+, 36+, 44+		
Control (n=24)	3+, 6, 6, 6, 6, 8, 8, 12, 12, 12+, 15+, 16+, 18+, 18+, 20, 22+, 24, 28+, 28+, 28+, 30, 30+, 33+, 42		


Kaplan-Meier Example

- Case (i)	Survival time (months) (t _i)	Number alive (r _i)	Deaths (d _i)	Proportion surviving	Cumulative
				(ri-di)/ri	Proportion S(t)
	0	0	0	-	1
1	1+	25	0	1	1
2	5+	24	0	1	1
3	6	23	2	0.9130	0.9130
4	6				
5	9+	21	0	1	0.9130
6	10	20	2	0.90	0.8217
7	10				
8	10+				
9	12	17	4	0.7647	0.6284
10	12				
11	12				
12	12				
13	12+				
14	13+	12	0	1	0.6284
15	15+	11	0	1	0.6284
16	16+	10	0	1	0.6284
17	20+	9	0	1	0.6284
18	24	8	1	0.875	0.5498
19	24+				
20	27+	6	0	1	0.5498
21	32	5	1	0.80	0.4399
22	34+				
23	36+				
24	36+				
25	44+				

Kaplan-Meier Survival Estimate Curve



Estimation of Mean time from Kaplan-Meier Curve (Area under the curve)

Estimation of Median time from Kaplan-Meier Curve (Time at which S(t)=0.50)

Log Rank Test to Compare Two Survival Functions

- H₀: Two groups (treatments) don't differ with respect to population survival functions.
- H_A: There is a difference between two survival functions.
- With O_A and O_B as actual number of events and E_A and E_B as expected number of events

$$X^{2} = \frac{(O_{A} - E_{A})^{2}}{E_{A}} + \frac{(O_{B} - E_{B})^{2}}{E_{B}}$$

Computing E_A AND E_B

- Order the data for two groups combined.
- Consider each event starting at time t=0.
- At each event at time t_i consider the total alive (r_i) and total number still alive in group A (r_{Ai}) up to that point.

$$E_{Ai} = (r_{Ai}/r_i) \times d_i$$

 $E_A = Sum(E_{Ai})$

 $E_B = n - E_A$ n=total number of events

Table 12.1 Survival in 49 patients with Dukes' C colorectal cancer randomly assigned to either y linoleic acid or control treatment			
Treatment	Survival time (months)		
y linoleic acid (n=25)	1+, 5+, 6, 6, 9+, 10, 10, 10+, 12, 12, 12, 12, 12+, 13+, 15+, 16+, 20+, 24, 24+, 27+, 32, 34+, 36+, 36+, 44+		
Control (n=24)	3+, 6, 6, 6, 6, 8, 8, 12, 12, 12+, 15+, 16+, 18+, 18+, 20, 22+, 24, 28+, 28+, 28+, 30, 30+, 33+, 42		

Calculations

Survival time (months)	Group	Total at risk		Total at risk in group A	
t_i		r	d _i	r _{Ai}	E _{Ai}
0		49			
1+	Α	49	0	25	0
3+	В	48	0	24	0
5+	Α	47	0	24	0
6	Α	46	6	23	3.0
6	Α				
6	В				
6	В				
6	В				
6	В				
8	В	40	2	21	1.05
8	В				
9+	Α	38	0	21	0
10	Α	37	2	20	1.0811
10	Α				
10+	Α				
12	Α	34	6	17	3.0
12	Α				
12	Α				
12	Α				
12	В				
12	В				
12+	Α				

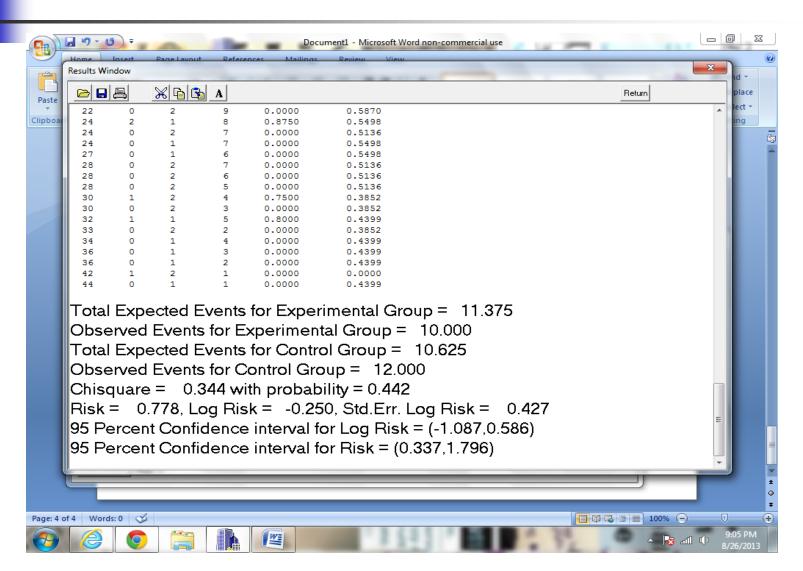
Calculations

$$X^{2} = \frac{(O_{A} - E_{A})^{2}}{E_{A}} + \frac{(O_{B} - E_{B})^{2}}{E_{B}}$$

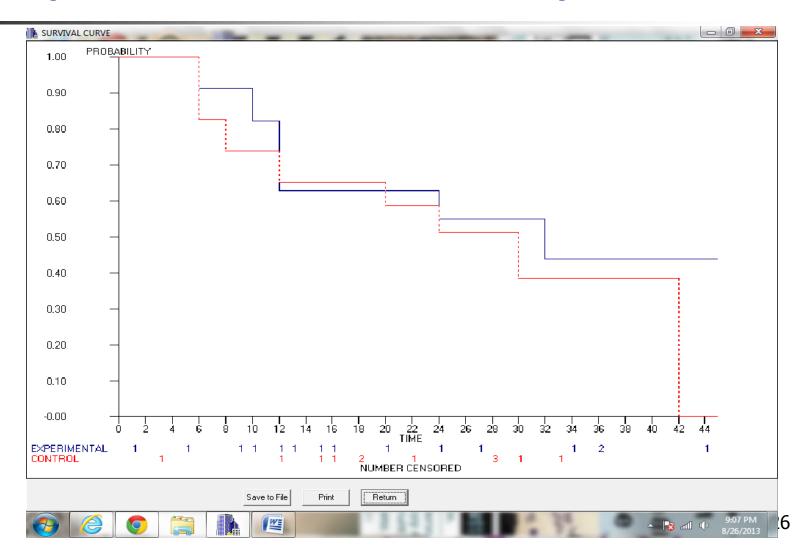
$$X^{2} = \frac{(10-11.37)^{2}}{11.37} + \frac{(12-10.63)^{2}}{10.63} = 0.34$$

$$p = 0.44$$

Little evidence that this result would not have arisen by chance


Hazard Ratio

Hazard Ratio is a measure of the relative survival experience in the two groups.


$$HR = \frac{O_A}{O_B} = \frac{10}{11.37} = 0.779$$

$$E_B = \frac{10}{12/10.63}$$

Survival Analysis in Openstat

Kaplan-Meier Curves in Openstat

Assumptions

- Uninformative censoring
- Length of follow up
- Completeness of follow up
- Cohort effect on survival
- Between center differences
- Risk of an event in one group relative to the other does not change with time.

More Advanced Methods

- An extension of log rank test is cox regression.
- Cox regression allows for patients related factors that could potentially affect the survival time of a patient.

4

Reading and Reporting

- Always report confidence intervals of measures.
 - The log rank test should be presented as X^2 (log rank)=0.34, d.f=1, p=0.44, estimated relative risk=0.779, 95% confidence interval 0.34 to 1.80
- Don't read too much into the right hand part of a Kaplan-Meier Plot.
- Openstat is a free soft ware that can be used for survival analysis.

Survival Analysis Part I: Basic Concepts and First Analysis

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394262/pdf/89-6601118a.pdf

Statistics Review: Survival Analysis

http://www.biomedcentral.com/content/pdf/cc2955.pdf

- A comprehensive book
 - Survival Analysis A self Learning Text
 David G. Kleinbaum & Mitchel Klein

Questions/Comments

Rizwana.Rehman@va.gov

(919) 286-0411 ext: 5024

For more information, program materials, and to complete evaluation for CME credit visit

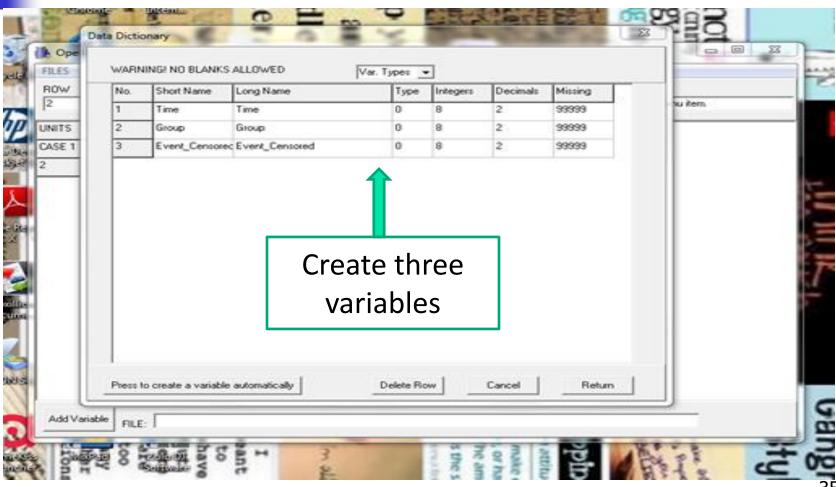
www.epilepsy.va.gov/Statistics

APPENDIX Survival Analysis with OpenStat

Table 12.1 Survival in 49 patients with Dukes' C colorectal cancer randomly assigned to either γ linoleic acid or control treatment		
Treatment	Survival time (months)	
y linoleic acid (n=25)	1+, 5+, 6, 6, 9+, 10, 10, 10+, 12, 12, 12, 12, 12+, 13+, 15+, 16+, 20+, 24, 24+, 27+, 32, 34+, 36+, 36+, 44+	
Control (n=24)	3+, 6, 6, 6, 6, 8, 8, 12, 12, 12+, 15+, 16+, 18+, 18+, 20, 22+, 24, 28+, 28+, 28+, 28+, 30, 30+, 33+, 42	

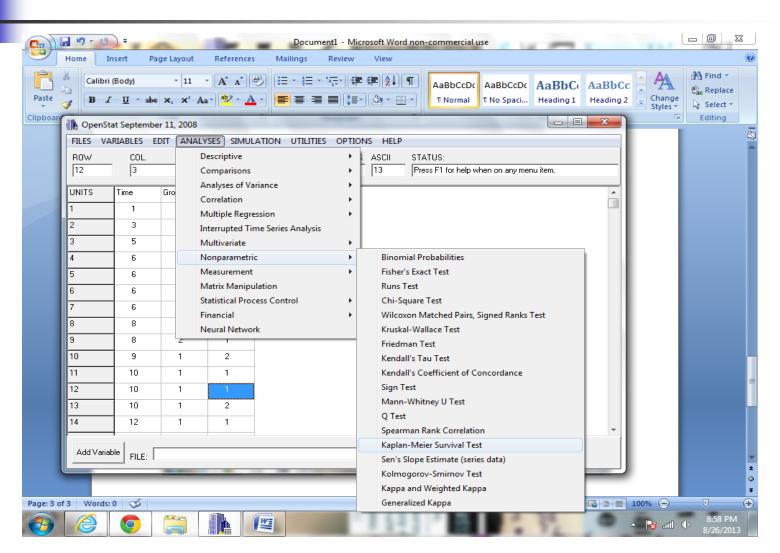
Download & Tutorial

Free download

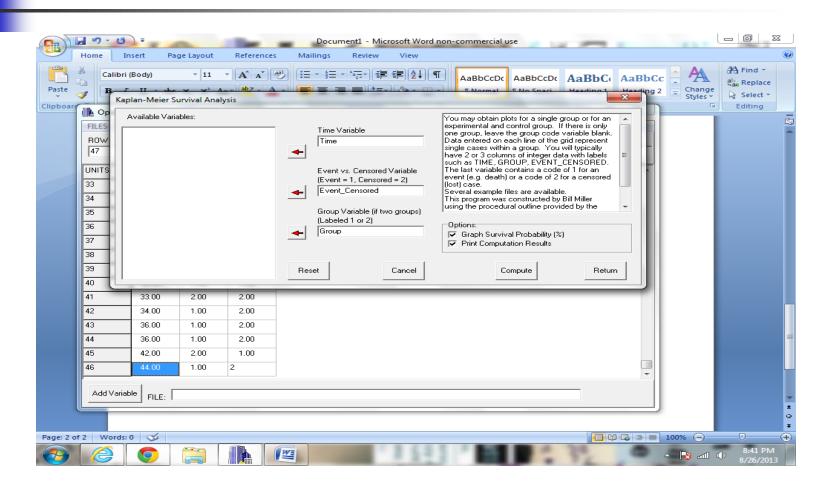

http://www.statprograms4u.com/OpenStatMain.htm

http://openstat.en.softonic.com/

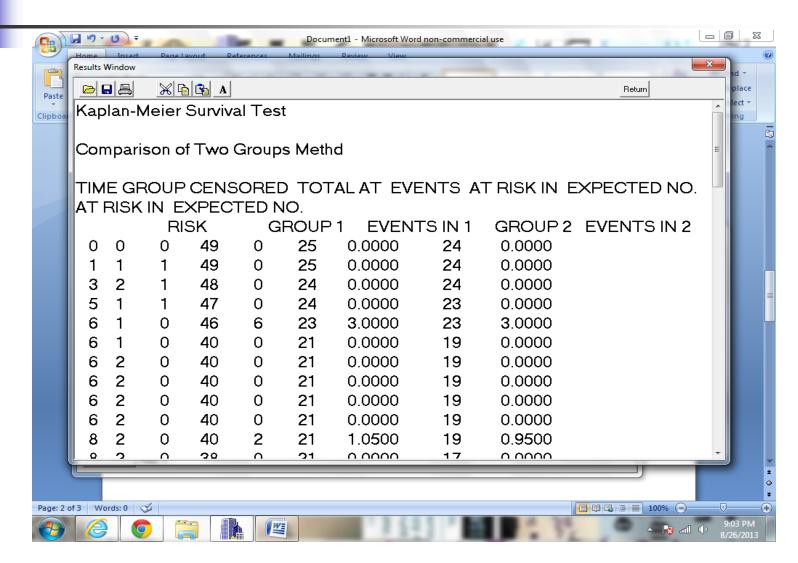
Tutorial A good resource

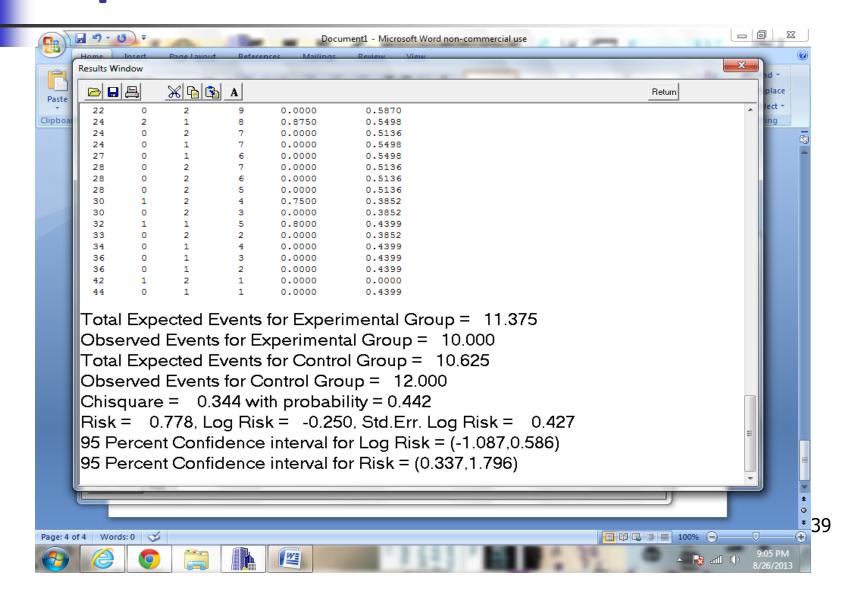

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web &cd=2&ved=0CDcQFjAB&url=http%3A%2F%2Fwww.statprograms4u.com %2FOpenStatReferenceDoc.doc&ei=cpscUr--KMmxsASWrIDYCA&usg=AFQjCNEc964udnzMZ6CnAXsMzNG9K9MD1Q&sig 2=PgJo_FkycjMIR4zGaXuI_A

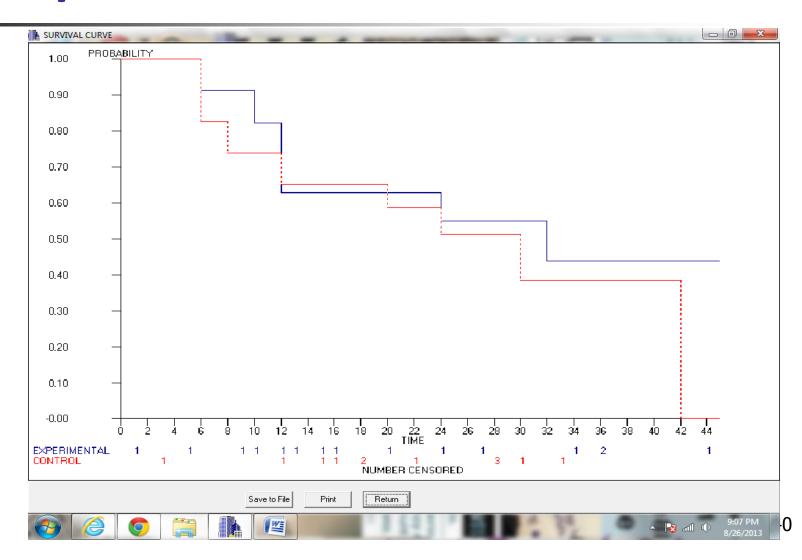
Entering the data



35


Choosing Kaplan-Meier


Selection of Variables on Dialogue Box


Results

Important Results

Kaplan-Meier Curves

