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i Course Outline

Understanding logistic regression in five lectures

Difference between relative risk and odds ratio v/,
mar AN O NnAaitinn 2 aYala S\/

terminology and interpretation of logistic regression

Suggested Book: Logistic Regression A Self-Learning Text
by Kleinbaum & Klein

Third Edition Springer



i Today’s Lecture

= Review of previous lectures

= Model fit statistics
= Significance of coefficients in the logistic regression

= Special cases
= Summary



i Odds (o)

* The odds (O) of an event are the likelihood of an

event occurring divided by the likelihood of event
not occurring

= For g 2X%2 table divide the counts of occurrence of an
event by counts of non occurrence of an event

Odds can lie between zero and infinity
Odds are ratios of proportions



ﬂ%elationship between Odds and Probability

= To calculate the odds (o) from Probability
(p)

Odds=———
1-p

= To calculate the probability from Odds

Proba biIity=1JOr—0



i Odds Ratio

= Ratio of two odds is called an odds ratio.

m |t is @ measure of association between two
variables. Odds Ratio=1 means that there is
no association between two variables.

s Example: Association between Heart Disease
(HD) and Blood Pressure (BP)
= Compute odds of HD among BP group
= Compute odds of HD among No PB group
= Divide the odds to get the Odds Ratio



i Odds Ratios and Relative Risk

m Relative risk is the ratio between two
probabilities

= Odds Ratio can’t be interpreted as relative
risk for a common disease in a case control
study

m For arare disease odds ratio and relative
risk are approximately equal



Logistic Regression and Odds

= Logistic regression is used for a (binary) outcome variable
= Logistic regression applies logit transformation to the
dependent variable to produce a linear relationship.

Estimated . p
natural log Logit (Y)= Ioge(g) =byt+b, X

Odds

= If coefficient b, is positive, then large values of X are
associated with large value of logit of Y and small values of

X are associated with small values of logit of Y

= If coefficient b, is negative, then large values of X are
associated with small values of logit of Y and small values
of X are associated with large values of logit of Y o



i Interpretation of b, for a Binary X

m XcodedasO,1
= log (Odds Ratio) = b,

The estimated regression coefficient b, is the
natural log of the odds ratio. This is the

change in log odds of Y when X changes from
Oto 1.

Odds Ratio=change in log odds =e?1



i Special Case: Binary (0,1) Xs

= Suppose we have many independent
variables in a logistic model

s We can obtain an adjusted odds ratio for
each (0,1) X variable in the logistic model
by exponentiating the coefficient
corresponding to that variable

10



i Example: Special Case

m Outcome variable Coronary Heart Disease CHD
(0,1)

= X,=Catecholamine level CAT (0=low,1=high)
= X,=Age in years (continuous)
= X;=ECG (0O=normal,1=abnormal)

Logit(Y)=0.1023+0.652%CAT+0.029%AGE+0.342XECG
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i Example Continued

= b, for CAT (O, 1) =0.652
= b, for AGE Continuous=0.029
= b, for ECG (0,1) =0.342

The odds of CHD for people with a high
catecholamine level were e9-632= 1,919
times the odds for people with low
catecholamine level while controlling for
Age and ECG.
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i Example Continued

= b, for CAT (O, 1) =0.652
= b, for AGE Continuous=0.029
= b, for ECG (0,1) =0.342

The odds of CHD among people with an
abnormal EEG were e%3%2= 1.408 times the
odds for people with normal EEG while
controlling for Age and Catecholamine level.

13



i Example Continued

= b, for CAT (O, 1) =0.652
= b, for AGE Continuous=0.029
= b, for ECG (0,1) =0.342

With a one year change in age the log odds
of CHD change by 0.029 adjusting for Age

and Catecholamine level
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Coefficients

i Model Fit: Statistical Significance of

= Specify the null Hypothesis: A coefficient b, is
zero

s Decide the significance level
s Compute a test statistic
s Compare results with a chi square distribution

m If the value of test statistic is greater than the
value of chi square, then reject the null
hypothesis; contribution of variable is significant

For complete understanding of p value and confidence intervals check “Understanding P
Value and Confidence Intervals “ from 2013 lecture series on statistics website 15



Model Fit: The Likelihood Ratio Test

= Inclusion of an explanatory variable in the
model tells us more about the outcome
than a model which does not include that
variable.

= Based upon likelihood functions

s Measures the discrepancy between the
observed value and predicted values

16



i Likelihood Ratio Test

= Logit (Y)=b, 1

= Logit (Y)= by+b, X, 2

m For each model calculate likelihood function’s values

m Take the difference 1-2; Difference is called likelihood ratio
statistic

s Compare with a chi square distribution with 1 degree of
freedom

= If log likelihood ratio is bigger than Chi Square, then reject nuII17
hypothesis



i Example: Smoking and Lung Cancer

Male Lung Cancer & Smoking (Doll and Hi

Lung cancer
(Case)

Control

Smokers

647

622

Non-smokers

2

27

647X27

Odds Ratio=

2X622

= 14.04

| 1950)

The odds of lung cancer in smokers
were 14 times the odds of lung cancer
in non-smokers
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Logistic Regression for Association
between Lung Cancer and Smoking

Logit(v)=|oge(1’%p) = -2.6025+2.6419%Smoking

m 2.6419 is the increment to the log odds for smokers

s Moving from non smokers to smokers increases the log
odds of lung cancer by 2.6419

log_(odds ratio)=2.6419

m Estimated odds of lung cancer among smokers are
e 2-0419=14.04 times the odds of lung cancer among non
smokers
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i Using Likelihood Ratio Test

We first consider intercept only model
Logit (Y)= b, (intercept only)----1799.41
s Then we consider model with smoking
= Logit (Y)= by+b; % Smoking----1773.27
m Difference= 26.14

s Compare with a Chi Square distribution with one
degree of freedom =3.84 at 95% significance level

m P value <0.001 <0.05 reject hull hypothesis
= Inclusion improves the model. Smoking is associated

with Lung cancer 20



Using likelihood Ratio Test for Overall Evaluation of
a Logistic Model

= A logistic model is better fit if it is an
improvement on intercept only model

s We have k predictors variables
Logit (Y)= by+b X, +b X;-—---- +b X ----------- 2
= Intercept only Logit (Y)= b, -------—--- 1

= Compute likelihood functions for both and
proceed as described before

21



i Model Fit: The Wald Test

= Null Hypothesis:
m For a coefficient

0; IS Zero
0. compute the Wald test

statistic [b,/stand

ard error of b.]?

s Compare with a chi square distribution

= |f the value of Wald test statistic is greater
than the chi square, then reject null

hypothesis

22



i Wald Test: Results for smoking

Null Hypothesis: b,=2.6419 is zero
= Wald statistic=[2.6419/0.7349]%= 12.922

s Compare with chi square=3.84 with one degree
of freedom

= P=0.0003<0.05
= Reject null hypothesis

23



i Confidence Intervals

= Difficult but possible for likelihood ratio
test!

s We can compute Wald confidence intervals
for coefficients

b. £ 1.96% standard error b,

= By taking the exponents of the lower and
upper limits of confidence intervals we can
obtain a confidence interval of the odds
ratio 24



Computing Wald Confidence Intervals

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq
Intercept 1 -2.6025 0.7328 12.6139 0.0004
smoke 1 2.6419 0.7349 12.9229 0.0003

Smoking coefficient=2.6419

Lower limit =2.6419-1.96%0.7349=1.2015
Upper limit=2.6419-1.96%0.7349 = 4.0823
Odds Ratio =1.515

Lower limit=e 120%>= 3,325

Upper limit= e #0823=59,282

25



* Computer (sas) Output

Odds Ratio Estimates

Effect

smoke

Point
Estimate

14.04

95% Wald

Confidence Limits

3.325

59.281
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Special Case: Which test to use?

s Wald test can also be used for an overall
evaluation of model

= |[n most situations both tests yield similar
inferences

= When both provide conflicting results then
likelihood ratio test is more accurate

= While reading a paper pay attention to the test
used and significance of coefficients and
overall fit of model .



i Special Case: Interaction

= Suppose a research paper reports
Logit (Y)= by+b X, +b, X, + b X, X,
= Also suppose that b, is significant

= Above is an example of significant
statistical interaction

B jon coefficients oLa#ari‘SEI/
correspond In log odds and
its-exponentiated form provides o

28




Interaction (Effect Modification)

s The presence of a significant interaction indicates
that the effect of one predictor variable on the
response variable is different at different values
of the other predictor variable.

m Distinct from confounding
logit (Y)= by+b X, +b,X,
s Confounding can be adjusted in statistical analysis
by estimating one common odds ratio

s Confounding is common; interaction is rare

29



i Interpretation of Coefficients

Logit (Y)= by+b X, +b, X, + b X, X,
= Interpretation of b, b, changes

= Depends upon nature of predictors X, and
X, (continuous, dichotomous or ordinal)

m Detailed discussion is out of scope of our
lecture

30



Summary

+

What have we learnt

Use of logistic regression for binary data

Meaning of confounding and statistical
Interaction

Interpretation of coefficients

Checking statistical significance of coefficients

Checking overall fit of logistic model
Beware of interactions

31



i www.epilepsy.va.gov/Statistics

Questions/Comments
Rizwana.Rehman@va.gov

(919) 286-0411 ext: 5024

Thank you for being patient !
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